Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241718

RESUMO

Periplasmic α-amylase MalS (EC. 3.2.1.1), which belongs to glycoside hydrolase (GH) family 13 subfamily 19, is an integral component of the maltose utilization pathway in Escherichia coli K12 and used among Ecnterobacteriaceae for the effective utilization of maltodextrin. We present the crystal structure of MalS from E. coli and reveal that it has unique structural features of circularly permutated domains and a possible CBM69. The conventional C-domain of amylase consists of amino acids 120-180 (N-terminal) and 646-676 (C-terminal) in MalS, and the whole domain architecture shows the complete circular permutation of C-A-B-A-C in domain order. Regarding substrate interaction, the enzyme has a 6-glucosyl unit pocket binding it to the non-reducing end of the cleavage site. Our study found that residues D385 and F367 play important roles in the preference of MalS for maltohexaose as an initial product. At the active site of MalS, ß-CD binds more weakly than the linear substrate, possibly due to the positioning of A402. MalS has two Ca2+ binding sites that contribute significantly to the thermostability of the enzyme. Intriguingly, the study found that MalS exhibits a high binding affinity for polysaccharides such as glycogen and amylopectin. The N domain, of which the electron density map was not observed, was predicted to be CBM69 by AlphaFold2 and might have a binding site for the polysaccharides. Structural analysis of MalS provides new insight into the structure-evolution relationship in GH13 subfamily 19 enzymes and a molecular basis for understanding the details of catalytic function and substrate binding of MalS.


Assuntos
Glicosídeo Hidrolases , alfa-Amilases , alfa-Amilases/metabolismo , Glicosídeo Hidrolases/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Amilases/metabolismo , Especificidade por Substrato , Cristalografia por Raios X
2.
Nat Commun ; 11(1): 2728, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483114

RESUMO

The Pseudomonas putida phenol-responsive regulator DmpR is a bacterial enhancer binding protein (bEBP) from the AAA+ ATPase family. Even though it was discovered more than two decades ago and has been widely used for aromatic hydrocarbon sensing, the activation mechanism of DmpR has remained elusive. Here, we show that phenol-bound DmpR forms a tetramer composed of two head-to-head dimers in a head-to-tail arrangement. The DmpR-phenol complex exhibits altered conformations within the C-termini of the sensory domains and shows an asymmetric orientation and angle in its coiled-coil linkers. The structural changes within the phenol binding sites and the downstream ATPase domains suggest that the effector binding signal is propagated through the coiled-coil helixes. The tetrameric DmpR-phenol complex interacts with the σ54 subunit of RNA polymerase in presence of an ATP analogue, indicating that DmpR-like bEBPs tetramers utilize a mechanistic mode distinct from that of hexameric AAA+ ATPases to activate σ54-dependent transcription.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Conformação Proteica , Multimerização Proteica , Transativadores/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenol/metabolismo , Ligação Proteica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Homologia de Sequência de Aminoácidos , Transativadores/genética , Transativadores/metabolismo
3.
Biochem Biophys Res Commun ; 526(1): 35-40, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32192768

RESUMO

Endonuclease G (EndoG) is a mitochondrial enzyme that responds to apoptotic stimuli by translocating to the nucleus and cleaving the chromatin DNA. The molecular mechanism of EndoG still remains unknown in higher organisms. Here, we determined the crystal structure of mouse EndoG at ∼1.96 Å resolution. The EndoG shows an altered dimeric configuration in which N-terminal region of one subunit interact to the other subunit in dimer. The deletion of this region that is highly conserved in mammalian EndoGs resulted in a monomer with significantly reduced activity suggesting the association of the dimeric arrangement into the nuclease activity. Furthermore, we observed a large conformational change in the loop of the active site groove in EndoG, which corresponds to the DNA binding region. Intriguingly, EndoG dimers are linked by oxidation of the reactive cysteine 110 in this flexible loop to form a long oligomeric chain in the crystal lattice. The structural analysis and ensuing biochemical data suggest that this flexible loop region in the active site is important to the regulation of EndoG nuclease function in mouse.


Assuntos
Endodesoxirribonucleases/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , DNA/química , Camundongos , Modelos Moleculares , Oxirredução , Ligação Proteica , Multimerização Proteica
4.
Sci Rep ; 9(1): 13911, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558757

RESUMO

Cpf1 is an RNA-guided endonuclease that can be programmed to cleave DNA targets. Specific features, such as containing a short crRNA, creating a staggered cleavage pattern and having a low off-target rate, render Cpf1 a promising gene-editing tool. Here, we present a new Cpf1 ortholog, EeCpf1, as a genome-editing tool; this ortholog is derived from the gut bacterial species Eubacterium eligens. EeCpf1 exhibits a higher cleavage activity with the Mn2+ metal cofactor and efficiently cuts the target DNA with an engineered, nucleotide extended crRNA at the 5' target site. When mouse blastocysts were injected with multitargeting crRNAs against the IL2R-γ gene, an essential gene for immunodeficient mouse model production, EeCpf1 efficiently generated IL2R-γ knockout mice. For the first time, these results demonstrate that EeCpf1 can be used as an in vivo gene-editing tool for the production of knockout mice. The utilization of engineered crRNA with multiple target sites will help to explore the in vivo DNA cleavage activities of Cpf1 orthologs from other species that have not been demonstrated.


Assuntos
Proteínas de Bactérias/metabolismo , Endonucleases/metabolismo , Eubacterium/enzimologia , Edição de Genes/métodos , Animais , Proteínas de Bactérias/genética , Blastocisto/metabolismo , Endonucleases/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Magnésio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Circular/genética
5.
Protein Sci ; 24(7): 1158-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25864423

RESUMO

Nitroreductases are flavoenzymes that catalyze nitrocompounds and are widely utilized in industrial applications due to their detoxification potential and activation of biomedicinal prodrugs. Type I nitroreductases are classified into subgroups depending on the use of NADPH or NADH as the electron donor. Here, we report the crystal structure of the fungal nitroreductase Frm2 from Saccharomyces cerevisiae, one of the uncharacterized subgroups of proteins, to reveal its minimal architecture previously observed in bacterial nitroreductases such as CinD and YdjA. The structure lacks protruding helical motifs that form part of the cofactor and substrate binding site, resulting in an open and wide active site geometry. Arg82 is uniquely conserved in proximity to the substrate binding site in Frm2 homologues and plays a crucial role in the activity of the active site. Frm2 primarily utilizes NADH to reduce 4-NQO. Because missing helical elements are involved in the direct binding to the NAD(P)H in group A or group B in Type I family, Frm2 and its homologues may represent a distinctive subgroup with an altered binding mode for the reducing compound. This result provides a structural basis for the rational design of novel prodrugs with the ability to reduce nitrogen-containing hazardous molecules.


Assuntos
Nitrorredutases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
6.
Biosci Biotechnol Biochem ; 79(5): 718-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25561012

RESUMO

Myoglobin is an early biomarker for acute myocardial infarction. Recently, we isolated the antibody IgG-Myo2-7ds, which exhibits unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid dissociation kinetics are thought to be premature IgG forms that are produced during the early stage of in vivo immunization. In the present study, we identified the epitope region of the IgG-Myo2-7ds antibody to be the C-terminal region of myoglobin, which corresponds to 144-154 aa. The Fab fragment was directly purified by papain cleavage and protein G affinity chromatography and demonstrated kinetics of an association constant of 4.02 × 10(4) M(-1) s(-1) and a dissociation constant of 2.28 × 10(-2) s(-1), which retained the unique reaction kinetics of intact IgG-Myo2-7ds antibodies. Because a rapid dissociation antibody can be utilized for antibody recycling, the results from this study would provide a platform for the development of antibody engineering in potential diagnostic areas such as a continuous monitoring system for heart disease.


Assuntos
Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/metabolismo , Mioglobina/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Cinética , Camundongos , Dados de Sequência Molecular , Mioglobina/genética , Mioglobina/metabolismo
7.
Int J Mol Sci ; 15(12): 23658-71, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25530617

RESUMO

Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the V(H)-V(L) sequence with a (Gly4Ser)3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10⁻4 M⁻¹·s⁻¹ and 6.29 × 10⁻³ s⁻¹, respectively, with an affinity value exceeding 107 M⁻¹ (k(on)/k(off)), maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor.


Assuntos
Mioglobina/imunologia , Redobramento de Proteína , Anticorpos de Cadeia Única/química , Humanos , Cinética
8.
PLoS One ; 9(6): e98178, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892548

RESUMO

Human immunoglobulin heavy chain variable domains (VH) are promising scaffolds for antigen binding. However, VH is an unstable and aggregation-prone protein, hindering its use for therapeutic purposes. To evolve the VH domain, we performed in vivo protein solubility selection that linked antibiotic resistance to the protein folding quality control mechanism of the twin-arginine translocation pathway of E. coli. After screening a human germ-line VH library, 95% of the VH proteins obtained were identified as VH3 family members; one VH protein, MG2x1, stood out among separate clones expressing individual VH variants. With further screening of combinatorial framework mutation library of MG2x1, we found a consistent bias toward substitution with tryptophan at the position of 50 and 58 in VH. Comparison of the crystal structures of the VH variants revealed that those substitutions with bulky side chain amino acids filled the cavity in the VH interface between heavy and light chains of the Fab arrangement along with the increased number of hydrogen bonds, decreased solvation energy, and increased negative charge. Accordingly, the engineered VH acquires an increased level of thermodynamic stability, reversible folding, and soluble expression. The library built with the VH variant as a scaffold was qualified as most of VH clones selected randomly were expressed as soluble form in E. coli regardless length of the combinatorial CDR. Furthermore, a non-aggregation feature of the selected VH conferred a free of humoral response in mice, even when administered together with adjuvant. As a result, this selection provides an alternative directed evolution pathway for unstable proteins, which are distinct from conventional methods based on the phage display.


Assuntos
Evolução Molecular Direcionada/métodos , Cadeias Pesadas de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Dicroísmo Circular , Regiões Determinantes de Complementaridade/química , Eletroforese em Gel de Poliacrilamida , Células Germinativas/metabolismo , Humanos , Imunidade Humoral/imunologia , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Solubilidade , Estresse Fisiológico , Termodinâmica
9.
Biochim Biophys Acta ; 1834(1): 380-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22902546

RESUMO

PFTA (Pyrococcus furiosus thermostable amylase) is a hyperthermophilic amylase isolated from the archaeon Pyrococcus furiosus. This enzyme possesses characteristics of both α-amylase- and cyclodextrin (CD)-hydrolyzing enzymes, allowing it to degrade pullulan, CD and acarbose-activities that are absent in most α-amylases-without the transferring activity that is common in CD-hydrolyzing enzymes. The crystal structure of PFTA revealed a unique monomeric subunit with an extended N-terminal region and an N'-domain folded into its own active site-a significantly altered domain configuration relative to that of the conventional dimeric CD-hydrolyzing amylases in glycoside hydrolase family 13. The active site is formed by the interface of the N'-domain and the catalytic domain and exhibits a broad and wide-open geometry without the concave pocket that is commonly found in the active sites of maltogenic amylases. The mutation of a residue (Gly415 to Glu) located at the domain interface between the N'- and catalytic domains yielded an enzyme that produced a significantly higher purity maltoheptaose (G7) from ß-CD, supporting the involvement of this interface in substrate recognition and indicating that this mutant enzyme is a suitable candidate for the production of pure G7. The unique configuration of the active site distinguishes this archaic monomeric enzyme from classical bacterial CD-hydrolyzing amylases and provides a molecular basis for its enzymatic characteristics and for its potential use in industrial applications.


Assuntos
Proteínas Arqueais/química , Glucosidases/química , Pyrococcus furiosus/enzimologia , alfa-Amilases/química , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Glucosidases/genética , Mutação de Sentido Incorreto , Pyrococcus furiosus/genética , alfa-Amilases/genética
10.
J Microbiol Biotechnol ; 22(12): 1724-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23221536

RESUMO

An alpha-L-arabinofuranosidase (TmAFase) from Thermotoga maritima MSB8 is a highly thermostable exo-acting hemicellulase that exhibits a relatively higher activity towards arabinan and arabinoxylan, compared with other glycoside hydrolase 51 family enzymes. In the present study, we carried out the enzymatic characterization and structural analysis of TmAFase. Tight domain associations found in TmAFase, such as an inter-domain disulfide bond (Cys306 and Cys476) in each monomer, a novel extended arm (amino acids 374-385) at the dimer interface, and total 12 salt bridges in the hexamer, may account for the thermostability of the enzyme. One of the xylan binding determinants (Trp96) was identified in the active site, and a region of amino acids (374-385) protrudes out forming an obvious wall at the substrate-binding groove to generate a cavity. The altered cavity shape with a strong negative electrostatic distribution is likely related to the unique substrate preference of TmAFase towards branched polymeric substrates.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Thermotoga maritima/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermotoga maritima/genética
11.
J Mol Biol ; 404(2): 247-59, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20888836

RESUMO

Many microorganisms produce trehalose for stability and survival against various environmental stresses. Unlike the widely distributed trehalose-biosynthetic pathway, which utilizes uridine diphosphate glucose and glucose-6-phosphate, the newly identified enzyme trehalose glycosyltransferring synthase (TreT) from hyperthermophilic bacteria and archaea synthesizes an α,α-trehalose from nucleoside diphosphate glucose and glucose. In the present study, we determined the crystal structure of TreT from Pyrococcus horikoshii at 2.3 Å resolution to understand the detailed mechanism of this novel trehalose synthase. The conservation of essential residues in TreT and the high overall structural similarity of the N-terminal domain to that of trehalose phosphate synthase (TPS) imply that the catalytic reaction of TreT for trehalose synthesis would follow a similar mechanism to that of TPS. The acceptor binding site of TreT shows a wide and commodious groove and lacks the long flexible loop that plays a gating role in ligand binding in TPS. The observation of a wide space at the fissure between two domains and the relative shift of the N-domain in one of the crystal forms suggest that an interactive conformational change between two domains would occur, allowing a more compact architecture for catalysis. The structural analysis and biochemical data in this study provide a molecular basis for understanding the synthetic mechanism of trehalose, or the nucleotide sugar in reverse reaction of the TreT, in extremophiles that may have important industrial implications.


Assuntos
Glucosiltransferases/química , Glucosiltransferases/metabolismo , Pyrococcus horikoshii/enzimologia , Trealose/biossíntese , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Dimerização , Glucosiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Estrutura Quaternária de Proteína , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Proteins ; 78(8): 1847-55, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20187119

RESUMO

Glycogen serves as major energy storage in most living organisms. GlgX, with its gene in the glycogen degradation operon, functions in glycogen catabolism by selectively catalyzing the debranching of polysaccharide outer chains in bacterial glycosynthesis. GlgX hydrolyzes alpha-1,6-glycosidic linkages of phosphorylase-limit dextrin containing only three or four glucose subunits produced by glycogen phosphorylase. To understand its mechanism and unique substrate specificity toward short branched alpha-polyglucans, we determined the structure of GlgX from Escherichia Coli K12 at 2.25 A resolution. The structure reveals a monomer consisting of three major domains with high structural similarity to the subunit of TreX, the oligomeric bifunctional glycogen debranching enzyme (GDE) from Sulfolobus. In the overlapping substrate binding groove, conserved residues Leu270, Asp271, and Pro208 block the cleft, yielding a shorter narrow GlgX cleft compared to that of TreX. Residues 207-213 form a unique helical conformation that is observed in both GlgX and TreX, possibly distinguishing GDEs from isoamylases and pullulanases. The structural feature observed at the substrate binding groove provides a molecular explanation for the unique substrate specificity of GlgX for G4 phosphorylase-limit dextrin and the discriminative activity of TreX and GlgX toward substrates of varying lengths.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia em Camada Fina , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Propriedades de Superfície
13.
Artigo em Inglês | MEDLINE | ID: mdl-19407388

RESUMO

Endonuclease G (EndoG) is a mitochondrial enzyme that responds to apoptotic stimuli by translocating to the nucleus and cleaving chromosomal DNA. EndoG is the main apoptotic endonuclease in the caspase-independent pathway. Mouse EndoG without the mitochondrial localization signal (amino-acid residues 1-43) was successfully overexpressed, purified and crystallized using a microbatch method under oil. The initial crystal (type I) was grown in the presence of the detergent CTAB and diffracted to 2.8 A resolution, with unit-cell parameters a = 72.20, b = 81.88, c = 88.66 A, beta = 97.59 degrees in a monoclinic space group. The crystal contained two monomers in the asymmetric unit, with a predicted solvent content of 46.6%. Subsequent mutation of Cys110 improved the stability of the protein significantly and produced further crystals of types II, III and IV with space groups C2, P4(1)2(1)2 (or P4(3)2(1)2) and P2(1)2(1)2(1), respectively, in various conditions. This suggests the critical involvement of this conserved cysteine residue in the crystallization process.


Assuntos
Apoptose , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Animais , Cristalização , Cristalografia por Raios X , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/isolamento & purificação , Camundongos
14.
J Biol Chem ; 283(42): 28641-8, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18703518

RESUMO

TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for alpha-1,4-transferase and alpha-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the "flexible loop" (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in alpha-1,4-transferase activity and a reduced level of alpha-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the alpha-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.


Assuntos
Exodesoxirribonucleases/química , Sistema da Enzima Desramificadora do Glicogênio/química , Glicogênio/química , Fosfoproteínas/química , Sulfolobus solfataricus/metabolismo , Acarbose/química , Sequência de Aminoácidos , Ácido Aspártico/química , Domínio Catalítico , Análise Mutacional de DNA , Concentração de Íons de Hidrogênio , Conformação Molecular , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...